Photoionization of Reactive Molecules

Photoionization of Reactive Molecules – A Powerful Tool for Understanding Combustion Processes

Photoionization of Reactive Molecules – A Powerful Tool for Understanding Combustion Processes

Author(s): Fabian Holzmeier

Publication: Bunsenmagazin, Issue 2 2020, Aspekte, Seiten: 27-34

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/04ec-3m42

Introduction

Combustion research is not dead yet! Unfortunately, our en­ergy consumption exceeds still by far our capabilities to pro­vide energy from renewable sources. In 2017, almost 72% of the EU’s primary energy use was based on the combustion of traditional and bio-fuels [1]. More than 60 billion liters of fuel were burned in Germany alone in 2018 [2] to cover our im­mense demands, especially in transportation. Our everyday life is hence still unthinkable without combustion, and this will not change in the very short term despite all efforts. Therefore, there must still be a high interest in making the energy sup­ply by combustion more efficient for saving natural resources and minimizing its harmful impact on the environment. If we do not make an immense breakthrough in the field of renew­able energy sources in the very near future, we will not be able to meet our ambitious climate target without improving combustion processes, too. Besides considering combustion as a declining transient energy source on the way to a 100% energy supply by renewable sources, it is also explored to pro­duce carbon neutral fuels. The latter ones potentially have no net emission of greenhouse gas or leave a carbon footprint. It is for example sought to produce synthetic fuels from renew­able energy sources, such as wind turbines or solar panels [3]. Biofuels produced from biomass, like fuelwood or agricultural waste, do also not lead to a net increase of CO2 [4]. Capturing the CO2 emissions from fuel powered plants and reusing it for fuel production, e.g., by reaction with solid carbon to produce the fuel gas CO [5], would also mitigate the absolute green­house gas emission.

It is therefore necessary to develop better diagnostics for com­bustion reactions in order to understand the chemistry and fi­nally control and improve the elapsing processes, e.g., by find­ing better fuel blends or additives [6]. In combustion chemistry, reactive molecules, e.g., small open-shell organic radicals and carbenes play a significant role in the decomposition of the fuel molecules and the formation of unwanted side products, such as polycyclic aromatic hydrocarbons leading eventually to soot. The key to understanding the complex processes during combustion is to be able to identify all the intermediates occur­ring in the reaction and to quantify them at different stages. This data can then be used to develop mechanistic models, which help understanding combustion and enable to simulate ways to improve combustion efficiency and reduce harmful emissions. However, there is still a lack of accurate base data especially for reactive molecules, since they are challenging to generate and investigate. The increasing demand of biofuels means that not only pure hydrocarbon chemistry is relevant for studying combustion, but also organic molecules containing heteroatoms like oxygen and nitrogen [4]. Characterizing inter­mediates related to these kinds of fuels is thus highly desired.

Cite this: Holzmeier, Fabian (2020): Photoionization of Reactive Molecules – A Powerful Tool for Understanding Combustion Processes. Bunsenmagazin 2020, 2: 27-34. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/04ec-3m42 ​​​​​​​ ​​​​​​​​​​​​​​

References

[1] https://www.eea.europa.eu/data-and-maps/indicators/primary-energy-consumption-by-fuel-7/assessment.
[2] https://www.transportenvironment.org/what-we-do/sustainable-finance/fuel-taxes.
[3] J. Kopyscinski, T. J. Schildhauer, S. M.A. Biollaz, Fuel, 2010, 89,1763–1783.
[4] K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Ed., 2010, 49, 3572–3597.
[5] P. Lahijani, Z. A. Zainal, M. Mohammadi, A. R. Mohamed, Renew. Sust. Energ. Rev., 2015, 41, 615–632.
[6] K. Kohse-Höinghaus, Chem. Eur. J., 2016, 22, 13390–13401.
[7] W. Sander, G. Bucher, S. Wierlacher, Chem. Rev., 1993, 93, 1583–1621.
[8] X. Zhang, A. V. Friderichsen, S. Nandi, G. B. Ellison, D. E. David, J. T. McKinnon, T. G. Lindeman, D. C. Dayton, M. R. Nimlos, Rev. Sci. Instrum., 2003, 74, 3077–3086.
[9] C. Alcaraz, I. Fischer, D. Schröder, Radical Chemistry in the Gas Phase, in Encyclopedia of Radicals in Chemistry, Biology and Materials, C. Chatgilialoglu, A. Studer (Eds.), John Wiley & Sons, Chichester, 2012.
[10] S. Willitsch, J. M. Dyke, F. Merkt, Helv. Chim. Acta, 2003, 86, 1152–1166.
[11] W. E. Jones, E. G. Skolnik, Chem. Rev., 1976, 76, 563–592.
[12] S. J. Dunlavey, J. M. Dyke, N. Jonathan, A. Morris, Mol. Phys., 1980, 39, 1121–1135.
[13] G. A. Garcia, X. Tang, J.-F. Gil, L. Nahon, M. Ward, S. Batut, C. Fittschen, C. A. Taatjes, D. L. Osborn, J.-C. Loison, J. Chem. Phys., 2015, 142, 164201.
[14] J. M. Dyke, PCCP, 2019, 21, 9106–9136.
[15] F. Holzmeier, M. Lang, I. Fischer, P. Hemberger, G. A. Garcia, X. Tang, J.-C. Loison, PCCP, 2015, 17, 19507–19514.
[16] B. Gans, F. Holzmeier, J. Krüger, C. Falvo, A. Röder, A. Lopes, G. A. Garcia, C. Fittschen, J.-C. Loison, C. Alcaraz, J. Chem. Phys., 2016, 144, 204307.
[17] D. W. Kohn, H. Clauberg, P. Chen, Rev. Sci. Instrum., 1992, 63, 4003–4005.
[18] I. Fischer, Int. J. Mass Spectrom., 2002, 216, 131–153.
[19] P. Hemberger, M. Lang, B. Noller, I. Fischer, C. Alcaraz, B. K. Cunha de Miranda, G. A. Garcia, H. Soldi-Lose, J. Phys. Chem. A, 2011, 115, 2225–2230.
[20] F. Holzmeier, M. Lang, P. Hemberger, I. Fischer, ChemPhysChem, 2014, 15, 3489–3492.
[21] E. Reusch, F. Holzmeier, P. Constantinidis, P. Hemberger, I. Fischer, Angew. Chem. Int. Ed., 2017, 56, 8000–8003.
[22] E. Reusch, D. Kaiser, D. Schleier, R. Buschmann, A. Krueger, T. Hermann, B. Engels, I. Fischer, P. Hemberger, J. Phys. Chem. A, 2019, 123, 2008–2017.
[23] P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A, 2010, 114, 4698–4703.
[24] J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys., 1972, 8, 143–151.
[25] T. Baer, R. P. Tuckett, PCCP, 2017, 19, 9698–9723.
[26] A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum., 2012, 83, 83105.
[27] G. A. Garcia, B. K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum., 2013, 84, 53112.
[28] B. Sztáray, K. Voronova, K. G. Torma, K. J. Covert, A. Bodi, P. Hemberger, T. Gerber, D. L. Osborn, J. Chem. Phys., 2017, 147, 13944.
[29] D. W. Chandler, P. L. Houston, J. Chem. Phys., 1987, 87, 1445–1447.
[30] A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum., 1997, 68, 3477–3484.
[31] B. Sztáray, T. Baer, Rev. Sci. Instrum., 2003, 74, 3763–3768.
[32] H. R. Hrodmarsson, G. A. Garcia, L. Nahon, B. Gans, J.-C. Loison, J. Phys. Chem. A, 2019, 123, 9193–9198.
[33] A. Doughty, J. C. Mackie, J. Phys. Chem., 1992, 96, 10339– 10348.
[34] D. S. N. Parker, T. Yang, B. B. Dangi, R. I. Kaiser, P. P. Bera, T. J. Lee, Astrophys. J., 2015, 815, 115.
[35] T. F. Palmer, F. P. Lossing, J. Am. Chem. Soc., 1963, 85, 1733–1735.
[36] J. C. Robinson, N. E. Sveum, D. M. Neumark, J. Chem. Phys., 2003, 119, 5311–5314.
[37] J. D. Savee, S. Soorkia, O. Welz, T. M. Selby, C. A. Taatjes, D. L. Osborn, J. Chem. Phys., 2012, 136, 134307.
[38] H. Xu, S. T. Pratt, J. Phys. Chem. A, 2013, 117, 9331–9342.
[39] J. C. Robinson, N. E. Sveum, D. M. Neumark, Chem. Phys. Lett., 2004, 383, 601–605.
[40] N. E. Sveum, S. J. Goncher, D. M. Neumark, PCCP, 2006, 8, 592–598.
[41] B. Gans, L. A. V. Mendes, S. Boyé-Péronne, S. Douin, G. Garcia, H. Soldi-Lose, B. K. Cunha de Miranda, C. Alcaraz, N. Carrasco, P. Pernot, D. Gauyacq, J. Phys. Chem. A, 2010, 114, 3237– 3246.
[42] J.-C. Loison, J. Phys. Chem. A, 2010, 114, 6515–6520.
[43] B. Gans, G. A. Garcia, S. Boyé-Péronne, J.-C. Loison, S. Douin, F. Gaie-Levrel, D. Gauyacq, J. Phys. Chem. A, 2011, 115, 5387–5396.
[44] F. Holzmeier, I. Fischer, B. Kiendl, A. Krueger, A. Bodi, P. Hemberger, PCCP, 2016, 18, 9240–9247.
[45] C. A. Taatjes, S. J. Klippenstein, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, M. E. Law, P. R. Westmoreland, PCCP, 2005, 7, 806–813.
[46] P. Hemberger, B. Noller, M. Steinbauer, I. Fischer, C. Alcaraz, B. K. Cunha de Miranda, G. A. Garcia, H. Soldi-Lose, J. Phys. Chem. A, 2010, 114, 11269–11276.
[47] S. J. Klippenstein, J. A. Miller, A. W. Jasper, J. Phys. Chem. A, 2015, 119, 7780–7791.
[48] H. P. Reisenauer, G. Maier, A. Riemann, R. W. Hoffmann, Angew. Chem. Int. Ed. Engl., 1984, 23, 641.
[49] M. S. Schuurman, J. Giegerich, K. Pachner, D. Lang, B. Kiendl, R. J. MacDonell, A. Krueger, I. Fischer, Chem. Eur. J., 2015, 21, 14486–14495.
[50] E.E. Rennie, C.A.F. Johnson, J.E. Parker, D.M.P. Holland, D.A. Shaw, M.A. Hayes, Chem. Phys., 1998, 229, 107–123.
[51] F. Holzmeier, I. Wagner, I. Fischer, A. Bodi, P. Hemberger, J. Phys. Chem. A, 2016, 120, 4702–4710.
[52] P. Glarborg, A.D. Jensen, J.E. Johnsson, Prog. Energy Combust. Sci., 2003, 29, 89–113.
[53] E. Ikeda, P. Nicholls, J. C. Mackie, Proc. Combust. Inst., 2000, 28, 1709–1716.
[54] Z. Tian, Y. Li, T. Zhang, A. Zhu, Z. Cui, F. Qi, Combust. Flame, 2007, 151, 347–365.
[55] A. V. Friderichsen, E.-J. Shin, R. J. Evans, M. R. Nimlos, D. C. Dayton, G.B. Ellison, Fuel, 2001, 80, 1747–1755.
[56] A. M. Scheer, C. Mukarakate, D. J. Robichaud, G. B. Ellison, M. R. Nimlos, J. Phys. Chem. A, 2010, 114, 9043–9056.
[57] J. C. Mackie, K. R. Doolan, P. F. Nelson, J. Phys. Chem., 1989, 93, 664–670.
[58] B. Sztáray, A. Bodi, T. Baer, J. Mass Spectrom., 2010, 45, 1233–1245.
[59] L. M.P.F. Amaral, Ribeiro da Silva, Manuel A.V., J. Chem. Thermodyn., 2012, 48, 65–69.
[60] Chase, M. W. NIST-Janaf Thermochemical Tables, 4th ed., J. Chem. Ref. Data, Monograph 9, 1998.
[61] B. Cronin, M. G. D. Nix, R. H. Qadiri, M. N. R. Ashfold, PCCP, 2004, 6, 5031–5041.
[62] J. C. Biordi, Prog. Energy Combust. Sci., 1977, 3, 151–173.
[63] D. Felsmann, K. Moshammer, J. Krüger, A. Lackner, A. Brockhinke, T. Kasper, T. Bierkandt, E. Akyildiz, N. Hansen, A. Lucassen, P. Oßwald, M. Köhler, G. A. Garcia, L. Nahon, P. Hemberger, A. Bodi, T. Gerber, K. Kohse-Höinghaus, Proc. Combust. Inst., 2015, 35, 779–786.
[64] J. Krüger, G. A. Garcia, D. Felsmann, K. Moshammer, A. Lackner, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, PCCP, 2014, 16, 22791–22804.
[65] N. Hansen, T. A. Cool, P. R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. Sci., 2009, 35, 168–191.
[66] T. Bierkandt, P. Hemberger, P. Oßwald, M. Köhler, T. Kasper, Proc. Combust. Inst., 2017, 36, 1223–1232.
[67] Y. Li, L. Zhang, T. Yuan, K. Zhang, J. Yang, B. Yang, F. Qi, C. K. Law, Combust. Flame, 2010, 157, 143–154.
[68] Y. Di, C. S. Cheung, Z. Huang, Atmos. Environ., 2009, 43, 2721–2730.
[69] P. Hemberger, A. J. Trevitt, T. Gerber, E. Ross, G. da Silva, J. Phys. Chem. A, 2014, 118, 3593–3604.
[70] P. Hemberger, A. J. Trevitt, E. Ross, G. da Silva, J. Phys. Chem. Lett., 2013, 4, 2546–2550.
[71] J. H. Frank, A. Shavorskiy, H. Bluhm, B. Coriton, E. Huang, D. L. Osborn, Appl. Phys. B, 2014, 117, 493–499.
[72] J.B.A. Mitchell, C. Rebrion-Rowe, J.-L. LeGarrec, G. Taupier, N. Huby, M. Wulff, Combust. Flame, 2002, 131, 308–315.
[73] D. Schleier, P. Constantinidis, N. Faßheber, I. Fischer, G. Friedrichs, P. Hemberger, E. Reusch, B. Sztáray, K. Voronova, PCCP, 2018, 20, 10721–10731.
[74] L. Nahon, L. Nag, G. A. Garcia, I. Myrgorodska, U. Meierhenrich, S. Beaulieu, V. Wanie, V. Blanchet, R. Géneaux, I. Powis, PCCP, 2016, 18, 12696–12706.
[75] P. Hemberger, V. B. F. Custodis, A. Bodi, T. Gerber, J. A. van Bokhoven, Nat. Commun., 2017, 8, 15946.
[76] G. Zichittella, P. Hemberger, F. Holzmeier, A. Bodi, J. Pérez- Ramírez, J. Phys. Chem. Lett., 2020, 856–863.
[77] L. Barreau, K. Veyrinas, V. Gruson, S. J. Weber, T. Auguste, J.-F. Hergott, F. Lepetit, B. Carré, J.-C. Houver, D. Dowek, P. Salières, Nat. Commun., 2018, 9, 4727.

Get PDF

Download the full article​​​​​​​